469 research outputs found

    Revisiting van der Waals like behavior of f(R) AdS black holes via the two point correlation function

    Full text link
    Van der Waals like behavior of f(R)f(R) AdS black holes is revisited via two point correlation function, which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary condition is solved numerically and both the effect of boundary region size and f(R)f(R) gravity are probed. Moreover, an analogous specific heat related to δL\delta L is introduced. It is shown that the TδLT-\delta L graphs of f(R)f(R) AdS black holes exhibit reverse van der Waals like behavior just as the TST-S graphs do. Free energy analysis is carried out to determine the first order phase transition temperature TT_* and the unstable branch in TδLT-\delta L curve is removed by a bar T=TT=T_*. It is shown that the first order phase transition temperature is the same at least to the order of 101010^{-10} for different choices of the parameter bb although the values of free energy vary with bb. Our result further supports the former finding that charged f(R)f(R) AdS black holes behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find that the relative errors for both the cases θ0=0.1\theta_0=0.1 and θ0=0.2\theta_0=0.2 are small enough. The fitting functions between logTTc \log\mid T -T_c\mid and logδLδLc\log\mid\delta L-\delta L_c\mid for both cases are also obtained. It is shown that the slope is around 3, implying that the critical exponent is about 2/32/3. This result is in accordance with those in former literatures of specific heat related to the thermal entropy or entanglement entropy.Comment: Revised version. Match the published version. 14pages,5figure

    Probe optimization for quantum metrology via closed-loop learning control

    Full text link
    Experimentally achieving the precision that standard quantum metrology schemes promise is always challenging. Recently, additional controls were applied to design feasible quantum metrology schemes. However, these approaches generally does not consider ease of implementation, raising technological barriers impeding its realization. In this paper, we circumvent this problem by applying closed-loop learning control to propose a practical controlled sequential scheme for quantum metrology. Purity loss of the probe state, which relates to quantum Fisher information, is measured efficiently as the fitness to guide the learning loop. We confirm its feasibility and certain superiorities over standard quantum metrology schemes by numerical analysis and proof-of-principle experiments in a nuclear magnetic resonance (NMR) system

    In-wheel motor vibration control for distributed-driven electric vehicles:A review

    Get PDF
    Efficient, safe, and comfortable electric vehicles (EVs) are essential for the creation of a sustainable transport system. Distributed-driven EVs, which often use in-wheel motors (IWMs), have many benefits with respect to size (compactness), controllability, and efficiency. However, the vibration of IWMs is a particularly important factor for both passengers and drivers, and it is therefore crucial for a successful commercialization of distributed-driven EVs. This paper provides a comprehensive literature review and state-of-the-art vibration-source-analysis and -mitigation methods in IWMs. First, selection criteria are given for IWMs, and a multidimensional comparison for several motor types is provided. The IWM vibration sources are then divided into internally-, and externally-induced vibration sources and discussed in detail. Next, vibration reduction methods, which include motor-structure optimization, motor controller, and additional control-components, are reviewed. Emerging research trends and an outlook for future improvement aims are summarized at the end of the paper. This paper can provide useful information for researchers, who are interested in the application and vibration mitigation of IWMs or similar topics
    corecore